Continuous-time quantum walks on ultrametric spaces
نویسنده
چکیده
We introduce a continuous-time quantum walk on an ultrametric space corresponding to the set of p-adic integers and compute its time-averaged probability distribution. It is shown that localization occurs for any location of the ultrametric space for the walk. This result presents a striking contrast to the classical random walk case. Moreover we clarify a difference between the ultrametric space and other graphs, such as cycle graph, line, hypercube and complete graph, for the localization of the quantum case. Our quantum walk may be useful for a quantum search algorithm on a tree-like hierarchical structure.
منابع مشابه
Quantum Algorithms and Covering Spaces
It’s been recently demonstrated that quantum walks on graphs can solve certain computational problems faster than any classical algorithm. Therefore it is desirable to quantify those purely combinatorial properties of graphs which quantum walks take advantage of and try and separate them from those properties due to the encoding of the problem. In this paper we isolate the combinatorial propert...
متن کاملUltrametric Spaces in Continuous Logic
We investigate the continuous model theory of ultrametric spaces of diameter ≤ 1. There is no universal Polish ultrametric space of diameter 1; but there is a Polish ultrametric space, Umax, taking distances in Q∩[0, 1], which is universal for all such Polish ultrametric spaces. We show that in the continuous theory of Umax, nonforking is characterized by a stable independence relation, which i...
متن کاملLipschitz and uniformly continuous Reducibilities on Ultrametric polish spaces
We analyze the reducibilities induced by, respectively, uniformly continuous, Lipschitz, and nonexpansive functions on arbitrary ultrametric Polish spaces, and determine whether under suitable set-theoretical assumptions the induced degree-structures are well-behaved.
متن کاملQuantum Walks
Quantum walks can be considered as a generalized version of the classical random walk. There are two classes of quantum walks, that is, the discrete-time (or coined) and the continuous-time quantum walks. This manuscript treats the discrete case in Part I and continuous case in Part II, respectively. Most of the contents are based on our results. Furthermore, papers on quantum walks are listed ...
متن کاملFixed Point Theorems for Single Valued Mappings Satisfying the Ordered non-Expansive Conditions on Ultrametric and Non-Archimedean Normed Spaces
In this paper, some fixed point theorems for nonexpansive mappings in partially ordered spherically complete ultrametric spaces are proved. In addition, we investigate the existence of fixed points for nonexpansive mappings in partially ordered non-Archimedean normed spaces. Finally, we give some examples to discuss the assumptions and support our results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006